Test Catalog

Test Id : AHLP

AudioloGene Hearing Loss Panel, Varies

Useful For
Suggests clinical disorders or settings where the test may be helpful

Establishing a diagnosis of a syndromic or nonsyndromic hereditary hearing loss disorder

 

Identifying variants within genes known to be associated with hereditary hearing loss, allowing for predictive testing of at-risk family members

Genetics Test Information
Provides information that may help with selection of the correct genetic test or proper submission of the test request

Hereditary hearing loss is a genetically heterogeneous condition that can be either syndromic or nonsyndromic in origin.

 

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 200 genes associated with hereditary hearing loss: ABHD12, ACTG1, ADCY1, ADGRV1 (GPR98), AIFM1, ALMS1, ARSG, ATP2B2, ATP6V1B1, ATP6V1B2, BCS1L, BSND, BTD, CABP2, CACNA1D, CATSPER2, CCDC50, CD164, CDC14A, CDH23, CEACAM16, CEP250, CEP78, CHD7, CIB2, CISD2, CLDN14, CLIC5, CLPP, CLRN1, COCH, COL11A1, COL11A2, COL2A1, COL4A3, COL4A4, COL4A5, COL4A6, COL9A1, COL9A2, COL9A3, CRYL1, CRYM, DCDC2, DFNA5, DIABLO, DIAPH1, DIAPH3, DMXL2, DNMT, DSPP, EDN3, EDNRB, ELMOD3, EPS8, EPS8L2, ESPN, ESRRB, EYA1, EYA4, FDXR, FGF3, FGFR2, FGFR3, FITM2, FLNA, FOXC1, FOXI1, GATA3, GIPC3, GJB2 (DFNB1), GJB6, GPSM2, GREB1L, GRHL2, GRXCR1, GRXCR2, HARS2, HGF, HOMER2, HOXA2, HSD17B4, ILDR1, KARS (KARS1), KCNE1, KCNJ10, KCNQ1, KCNQ4, KITLG, LARS2, LHFPL5, LMX1A, LOXHD1, LRP2, LRTOMT, MAN2B1, MANBA, MARVELD2, MCM2, MET, MIR96, MITF, MPZL2, MSRB3, MT-RNR1, MT-TS1, MYH14, MYH9, MYO15A, MYO3A, MYO6, MYO7A, NARS2, NDRG1, NF2, NLRP3, OPA1, OSBPL2, OTOA, OTOF, OTOG, OTOGL, P2RX2, PAX3, PCDH15, PDZD7, PEX1, PEX10, PEX11B, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX6, PEX7, PHYH, PJVK (DFNB59), PLS1, PNPT1, POLR1B, POLR1C, POLR1D, POU3F4, POU4F3, PRPS1, PTPN11, PTPRQ, RAI1, RDX, RIPOR2 (FAM65B), RMND1, S1PR2, SALL1, SERAC1, SERPINB6, SIX1, SLC12A2, SLC17A8, SLC19A2, SLC22A4, SLC26A4, SLC26A5, SLC29A3, SLC4A11, SLC52A2, SLC52A3, SLITRK6, SMPX, SNAI2, SOX10, SPATA5, STRC, SUCLA2, SYNE4, TBC1D24, TCOF1, TECTA, TFAP2A, TIMM8A, TJP2, TMC1, TMEM132E, TMIE, TMPRSS3, TNC, TPRN, TRIOBP, TUBB4B, TWNK, USH1C, USH1G, USH2A, WBP2, WFS1, WHRN. See Targeted Genes and Methodology Details for AudioloGene Hearing Loss Panel and Method Description for additional details.

 

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, recurrence risk assessment, familial screening, and genetic counseling for hereditary hearing loss.

Reflex Tests
Lists tests that may or may not be performed, at an additional charge, depending on the result and interpretation of the initial tests.

Test Id Reporting Name Available Separately Always Performed
CULFB Fibroblast Culture for Genetic Test Yes No

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

For skin biopsy or cultured fibroblast specimens, fibroblast culture will be performed at an additional charge. If viable cells are not obtained, the client will be notified.

Method Name
A short description of the method used to perform the test

Sequence Capture and Amplicon-Based Targeted Next-Generation Sequencing, Polymerase Chain Reaction (PCR), Digital Droplet PCR (ddPCR), Sanger Sequencing, and Gene Dosage Analysis by Multiplex Ligation-Dependent Probe Amplification (MLPA)

NY State Available
Indicates the status of NY State approval and if the test is orderable for NY State clients.

Yes

Reporting Name
Lists a shorter or abbreviated version of the Published Name for a test

AudioloGene Hearing Loss Panel

Aliases
Lists additional common names for a test, as an aid in searching

A la carte

Custom Gene Ordering

Custom Gene Panel

Custom NGS Panel

Custom ordering

Custom Panels

Custom Sequencing Panels

Custom sequencing test

Customizable Deafness Panels

Customizable Hearing Loss Panels

Customizable Hereditary Panels

Customizable Panels

Deafness, autosomal dominant

Deafness, autosomal recessive

Deafness, autosomal recessive 4 with enlarged vestibular aqueduct

Deafness, X-linked

Next Gen Sequencing Test

DFNB1

Alport syndrome

Alstrom syndrome

Aminoglycoside ototoxicity

Arts syndrome

Auditory neuropathy

Axenfeld-Rieger syndrome 3

Behr syndrome

Biotinidase deficiency

Bjornstad syndrome

Branchiootic syndrome

Branchiootorenal syndrome

Brown-Vialetto-Van Laere syndrome

Cerebellar ataxia, deafness, and narcolepsy

CHARGE syndrome

Cone-rod dystrophy and hearing loss

Congenital deafness

Congenital deafness with LAMM syndrome

Congenital hearing loss

Crouzon syndrome

Deafness-infertility syndrome

Heimler syndrome

Hereditary deafness

Hereditary hearing loss

Hypoparathyroidism, sensorineural deafness, and renal dysplasia

Jervell and Lange-Nielsen syndrome

LEOPARD syndrome

Microtia with deafness

Muckle-Wells syndrome

Neurofibromatosis 2

Nonsyndromic autosomal recessive deafness

Nonsyndromic deafness

Nonsyndromic hearing loss

Otopalatodigital syndrome, type II

Pendred syndrome

Perrault syndrome

Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract

Refsum disease

Renal tubular acidosis with deafness

SESAME syndrome

Sinoatrial node dysfunction and deafness

Stickler syndrome

Syndromic deafness

Syndromic hearing loss

Treacher Collins syndrome

Usher syndrome

Waardenburg syndrome

Wolfram syndrome

Wolfram-like syndrome

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

For skin biopsy or cultured fibroblast specimens, fibroblast culture will be performed at an additional charge. If viable cells are not obtained, the client will be notified.

Specimen Type
Describes the specimen type validated for testing

Varies

Ordering Guidance

Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.

 

Targeted testing for familial variants (also called site-specific or known variants testing) is available for the genes on this panel. For more information see FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.

Shipping Instructions

Specimen preferred to arrive within 96 hours of collection.

Necessary Information

Molecular Genetics: Hereditary Hearing Loss Patient Information or a recent clinical note should be submitted along with the sample.

Specimen Required
Defines the optimal specimen required to perform the test and the preferred volume to complete testing

Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

 

Submit only 1 of the following specimens:

 

Specimen Type: Whole blood

Container/Tube:

Preferred: Lavender top (EDTA) or yellow top (ACD)

Acceptable: Any anticoagulant

Specimen Volume: 3 mL

Collection Instructions:

1. Invert several times to mix blood.

2. Send whole blood specimen in original tube. Do not aliquot.

Specimen Stability Information: Ambient (preferred)/Refrigerated

 

Specimen Type: Skin biopsy

Supplies: Fibroblast Biopsy Transport Media (T115)

Container/Tube: Sterile container with any standard cell culture media (eg, minimal essential media, RPMI 1640). The solution should be supplemented with 1% penicillin and streptomycin.

Specimen Volume: 4-mm punch

Specimen Stability Information: Refrigerated (preferred)/Ambient

Additional Information: A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks is required to culture fibroblasts before genetic testing can occur.

 

Specimen Type: Cultured fibroblasts

Container/Tube: T-25 Flask

Specimen Volume: 2 Flasks

Collection Instructions: Submit confluent cultured fibroblast cells from a skin biopsy from another laboratory. Cultured cells from a prenatal specimen will not be accepted.

Specimen Stability Information: Ambient (preferred)/Refrigerated (<24 hours)

Additional Information: A separate culture charge will be assessed under CULFB / Fibroblast Culture for Biochemical or Molecular Testing. An additional 3 to 4 weeks is required to culture fibroblasts before genetic testing can occur.

Special Instructions
Library of PDFs including pertinent information and forms related to the test

Forms

1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:

-Informed Consent for Genetic Testing (T576)

-Informed Consent for Genetic Testing (Spanish) (T826)

2. Molecular Genetics Hereditary Hearing Loss Patient Information

3. If not ordering electronically, complete, print, and send a Neurology Specialty Testing Client Test Request (T732) with the specimen.

Reject Due To
Identifies specimen types and conditions that may cause the specimen to be rejected

All specimens will be evaluated by Mayo Clinic Laboratories for test suitability.

Specimen Stability Information
Provides a description of the temperatures required to transport a specimen to the performing laboratory, alternate acceptable temperatures are also included

Specimen Type Temperature Time Special Container
Varies Varies

Useful For
Suggests clinical disorders or settings where the test may be helpful

Establishing a diagnosis of a syndromic or nonsyndromic hereditary hearing loss disorder

 

Identifying variants within genes known to be associated with hereditary hearing loss, allowing for predictive testing of at-risk family members

Genetics Test Information
Provides information that may help with selection of the correct genetic test or proper submission of the test request

Hereditary hearing loss is a genetically heterogeneous condition that can be either syndromic or nonsyndromic in origin.

 

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 200 genes associated with hereditary hearing loss: ABHD12, ACTG1, ADCY1, ADGRV1 (GPR98), AIFM1, ALMS1, ARSG, ATP2B2, ATP6V1B1, ATP6V1B2, BCS1L, BSND, BTD, CABP2, CACNA1D, CATSPER2, CCDC50, CD164, CDC14A, CDH23, CEACAM16, CEP250, CEP78, CHD7, CIB2, CISD2, CLDN14, CLIC5, CLPP, CLRN1, COCH, COL11A1, COL11A2, COL2A1, COL4A3, COL4A4, COL4A5, COL4A6, COL9A1, COL9A2, COL9A3, CRYL1, CRYM, DCDC2, DFNA5, DIABLO, DIAPH1, DIAPH3, DMXL2, DNMT, DSPP, EDN3, EDNRB, ELMOD3, EPS8, EPS8L2, ESPN, ESRRB, EYA1, EYA4, FDXR, FGF3, FGFR2, FGFR3, FITM2, FLNA, FOXC1, FOXI1, GATA3, GIPC3, GJB2 (DFNB1), GJB6, GPSM2, GREB1L, GRHL2, GRXCR1, GRXCR2, HARS2, HGF, HOMER2, HOXA2, HSD17B4, ILDR1, KARS (KARS1), KCNE1, KCNJ10, KCNQ1, KCNQ4, KITLG, LARS2, LHFPL5, LMX1A, LOXHD1, LRP2, LRTOMT, MAN2B1, MANBA, MARVELD2, MCM2, MET, MIR96, MITF, MPZL2, MSRB3, MT-RNR1, MT-TS1, MYH14, MYH9, MYO15A, MYO3A, MYO6, MYO7A, NARS2, NDRG1, NF2, NLRP3, OPA1, OSBPL2, OTOA, OTOF, OTOG, OTOGL, P2RX2, PAX3, PCDH15, PDZD7, PEX1, PEX10, PEX11B, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX6, PEX7, PHYH, PJVK (DFNB59), PLS1, PNPT1, POLR1B, POLR1C, POLR1D, POU3F4, POU4F3, PRPS1, PTPN11, PTPRQ, RAI1, RDX, RIPOR2 (FAM65B), RMND1, S1PR2, SALL1, SERAC1, SERPINB6, SIX1, SLC12A2, SLC17A8, SLC19A2, SLC22A4, SLC26A4, SLC26A5, SLC29A3, SLC4A11, SLC52A2, SLC52A3, SLITRK6, SMPX, SNAI2, SOX10, SPATA5, STRC, SUCLA2, SYNE4, TBC1D24, TCOF1, TECTA, TFAP2A, TIMM8A, TJP2, TMC1, TMEM132E, TMIE, TMPRSS3, TNC, TPRN, TRIOBP, TUBB4B, TWNK, USH1C, USH1G, USH2A, WBP2, WFS1, WHRN. See Targeted Genes and Methodology Details for AudioloGene Hearing Loss Panel and Method Description for additional details.

 

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, recurrence risk assessment, familial screening, and genetic counseling for hereditary hearing loss.

Testing Algorithm
Delineates situations when tests are added to the initial order. This includes reflex and additional tests.

For skin biopsy or cultured fibroblast specimens, fibroblast culture will be performed at an additional charge. If viable cells are not obtained, the client will be notified.

Clinical Information
Discusses physiology, pathophysiology, and general clinical aspects, as they relate to a laboratory test

Hereditary hearing loss encompasses a heterogeneous group of syndromic and nonsyndromic conditions. A comprehensive diagnostic genetic test is useful to help determine a molecular etiology for hearing loss and, therefore, identify other organ systems that may be involved, establish long-term prognosis, and ascertain the inheritance pattern and recurrence risk within a family.

 

Individuals with syndromic hearing loss typically have other organ or organ system involvement and may have malformations of the external ear. Individuals with nonsyndromic hearing loss may have abnormalities of the middle ear or inner ear but typically do not have visible abnormalities of the external ear. Additionally, they often do not have additional organ system involvement or other related medical problems.

 

In developed countries, approximately 50% to 60% of individuals with congenital hearing loss have a genetic etiology. Of those, approximately 70% of individuals have a nonsyndromic condition, and the remaining 30% have one of over 400 syndromes involving hearing loss. Of the individuals with nonsyndromic hearing loss, at least three-quarters have an autosomal recessive condition, approximately 25% of whom have variants in the GJB2 or GJB6 genes.(1)

Reference Values
Describes reference intervals and additional information for interpretation of test results. May include intervals based on age and sex when appropriate. Intervals are Mayo-derived, unless otherwise designated. If an interpretive report is provided, the reference value field will state this.

An interpretive report will be provided.

Interpretation
Provides information to assist in interpretation of the test results

All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(2,3) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.

Cautions
Discusses conditions that may cause diagnostic confusion, including improper specimen collection and handling, inappropriate test selection, and interfering substances

Clinical Correlations:
Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.

 

If testing was performed because of a clinically significant family history, it is often useful to first test an affected family member. Detection of a reportable variant in an affected family member would allow for more informative testing of at-risk individuals.

 

To discuss the availability of additional testing options or for assistance in the interpretation of these results, contact the Mayo Clinic Laboratories genetic counselors at 800-533-1710.

 

Technical Limitations:
Next-generation sequencing may not detect all types of genomic variants. In rare cases, false-negative or false-positive results may occur. The depth of coverage may be variable for some target regions; assay performance below the minimum acceptable criteria or for failed regions will be noted. Given these limitations, negative results do not rule out the diagnosis of a genetic disorder. If a specific clinical disorder is suspected, evaluation by alternative methods can be considered.

 

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. Confirmation of select reportable variants will be performed by alternate methodologies based on internal laboratory criteria.

 

This test is validated to detect 95% of deletions up to 75 base pairs (bp) and insertions up to 47 bp. Deletions-insertions (delins) of 40 or more bp, including mobile element insertions, may be less reliably detected than smaller delins.

 

Deletion/Duplication Analysis:

This analysis targets single and multi-exon deletions/duplications; however, in some instances, single exon resolution cannot be achieved due to isolated reduction in sequence coverage or inherent genomic complexity. Balanced structural rearrangements (such as translocations and inversions) may not be detected.

 

This test is not designed to detect low levels of mosaicism or to differentiate between somatic and germline variants. If there is a possibility that any detected variant is somatic, additional testing may be necessary to clarify the significance of results.

 

Genes may be added or removed based on updated clinical relevance. Refer to the Targeted Genes and Methodology Details for AudioloGene Hearing Loss Panel for the most up to date list of genes included in this test. For detailed information regarding gene specific performance and technical limitations, see Method Description or contact a laboratory genetic counselor.

 

If the patient has had an allogeneic hematopoietic stem cell transplant or a recent blood transfusion, results may be inaccurate due to the presence of donor DNA. Call Mayo Clinic Laboratories for instructions for testing patients who have received a bone marrow transplant.

 

Reclassification of Variants:
At this time, it is not standard practice for the laboratory to systematically review previously classified variants on a regular basis. The laboratory encourages healthcare providers to contact the laboratory at any time to learn how the classification of a particular variant may have changed over time.

 

Variant Evaluation:
Evaluation and categorization of variants are performed using published American College of Medical Genetics and Genomics and the Association for Molecular Pathology recommendations as a guideline.(2,3) Other gene-specific guidelines may also be considered. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Variants classified as benign or likely benign are not reported.

 

Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available for a given gene, and periodic updates to these tools may cause predictions to change over time. Results from in silico evaluation tools should be interpreted with caution and professional clinical judgment.

 

Rarely, incidental or secondary findings may implicate another predisposition or presence of active disease. These findings will be carefully reviewed to determine whether they will be reported.

Clinical Reference
Recommendations for in-depth reading of a clinical nature

1. Sloan-Heggen CM, Bierer AO, Shearer AE, et al: Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet. 2016 Apr;135(4):441-450

2. Richards S, Aziz N, Bale S, et al: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405-424

3. Oza AM, DiStefano MT, Hemphill SE, et al: Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat. 2018 Nov;39(11):1593-1613

4. Alford RL, Arnos KS, Fox M, et al: American College of Medical Genetics and Genomics guideline for the clinical evaluation and etiologic diagnosis of hearing loss. Genet Med. 2014 Apr;16(4):347-355

5. DiStefano MT, Hemphill SE, Oza AM, et al: ClinGen expert clinical validity curation of 164 hearing loss gene-disease pairs. Genet Med. 2019 Oct;21(10):2239-2247

6. Morton CC, Nance WE: Newborn hearing screening-a silent revolution. N Engl J Med. 2006 May 18;354(20):2151-2164

7. Shearer AE, Hildebrand MS, Smith RJH: Hereditary hearing loss and deafness overview. In: Adam MP, Everman DB, Mirzaa GM, et al, eds. GeneReviews [Internet]. University of Washington, Seattle; 1999. Updated July 27, 2017. Accessed October 25, 2022. Available at www.ncbi.nlm.nih.gov/books/NBK1434/

Method Description
Describes how the test is performed and provides a method-specific reference

Capture-based or amplicon-based next-generation sequencing (NGS) is performed to test for the presence of variants in coding regions and intron/exon boundaries of the genes analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated at above 99% for single nucleotide variants, above 94% for deletions-insertions (delins) less than 40 base pairs (bp), above 95% for deletions up to 75 bp and insertions up to 47 bp. NGS and/or multiplex ligation-dependent probe amplification is performed to test for the presence of deletions and duplications in the genes analyzed. Digital droplet polymerase chain reaction is performed to test for 3 mitochondrial variants.

 

There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences.(Unpublished Mayo method)

 

See Targeted Genes and Methodology Details for AudioloGene Hearing Loss Panel the for details regarding the targeted genes analyzed for each test and specific gene regions not routinely covered.

 

Reference transcript numbers may be updated due to transcript re-versioning. Always refer to the final patient report for gene transcript information referenced at the time of testing. Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria.

 

Genes analyzed: ABHD12, ACTG1, ADCY1, ADGRV1 (GPR98), AIFM1, ALMS1, ARSG, ATP2B2, ATP6V1B1, ATP6V1B2, BCS1L, BSND, BTD, CABP2, CACNA1D, CATSPER2, CCDC50, CD164, CDC14A, CDH23, CEACAM16, CEP250, CEP78, CHD7, CIB2, CISD2, CLDN14, CLIC5, CLPP, CLRN1, COCH, COL11A1, COL11A2, COL2A1, COL4A3, COL4A4, COL4A5, COL4A6, COL9A1, COL9A2, COL9A3, CRYL1, CRYM, DCDC2, DIABLO, DIAPH1, DIAPH3, DMXL2, DNMT1, DSPP, EDN3, EDNRB, ELMOD3, EPS8, EPS8L2, ESPN, ESRRB, EYA1, EYA4, FDXR, FGF3, FGFR2, FGFR3, FITM2, FLNA, FOXC1, FOXI1, GATA3, GIPC3, GJB2 (DFNB1), GJB6, GPSM2, GREB1L, GRHL2, GRXCR1, GRXCR2, GSDME, HARS2, HGF, HOMER2, HOXA2, HSD17B4, ILDR1, KARS1, KCNE1, KCNJ10, KCNQ1, KCNQ4, KITLG, LARS2, LHFPL5, LMX1A, LOXHD1, LRP2, LRTOMT, MAN2B1, MANBA, MARVELD2, MCM2, MET, MIR96, MITF, MPZL2, MSRB3, MT-RNR1, MT-TS1, MYH14, MYH9, MYO15A, MYO3A, MYO6, MYO7A, NARS2, NDRG1, NF2, NLRP3, OPA1, OSBPL2, OTOA, OTOF, OTOG, OTOGL, P2RX2, PAX3, PCDH15, PDZD7, PEX1, PEX10, PEX11B, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX6, PEX7, PHYH, PJVK, PLS1, PNPT1, POLR1B, POLR1C, POLR1D, POU3F4, POU4F3, PRPS1, PTPN11, PTPRQ, RAI1, RDX, RIPOR2, RMND1, S1PR2, SALL1, SERAC1, SERPINB6, SIX1, SLC12A2, SLC17A8, SLC19A2, SLC22A4, SLC26A4, SLC26A5, SLC29A3, SLC4A11, SLC52A2, SLC52A3, SLITRK6, SMPX, SNAI2, SOX10, SPATA5, STRC, SUCLA2, SYNE4, TBC1D24, TCOF1, TECTA, TFAP2A, TIMM8A, TJP2, TMC1, TMEM132E, TMIE, TMPRSS3, TNC, TPRN, TRIOBP, TUBB4B, TWNK, USH1C, USH1G, USH2A, WBP2, WFS1, and WHRN

PDF Report
Indicates whether the report includes an additional document with charts, images or other enriched information

Supplemental

Day(s) Performed
Outlines the days the test is performed. This field reflects the day that the sample must be in the testing laboratory to begin the testing process and includes any specimen preparation and processing time before the test is performed. Some tests are listed as continuously performed, which means that assays are performed multiple times during the day.

Varies

Report Available
The interval of time (receipt of sample at Mayo Clinic Laboratories to results available) taking into account standard setup days and weekends. The first day is the time that it typically takes for a result to be available. The last day is the time it might take, accounting for any necessary repeated testing.

28 to 42 days

Specimen Retention Time
Outlines the length of time after testing that a specimen is kept in the laboratory before it is discarded

Whole blood: 2 weeks (if available); Extracted DNA: 3 months; Cultured fibroblasts and skin biopsy: 1 month

Performing Laboratory Location
Indicates the location of the laboratory that performs the test

Rochester

Fees
Several factors determine the fee charged to perform a test. Contact your U.S. or International Regional Manager for information about establishing a fee schedule or to learn more about resources to optimize test selection.

  • Authorized users can sign in to Test Prices for detailed fee information.
  • Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.
  • Prospective clients should contact their account representative. For assistance, contact Customer Service.

Test Classification
Provides information regarding the medical device classification for laboratory test kits and reagents. Tests may be classified as cleared or approved by the US Food and Drug Administration (FDA) and used per manufacturer instructions, or as products that do not undergo full FDA review and approval, and are then labeled as an Analyte Specific Reagent (ASR) product.

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information
Provides guidance in determining the appropriate Current Procedural Terminology (CPT) code(s) information for each test or profile. The listed CPT codes reflect Mayo Clinic Laboratories interpretation of CPT coding requirements. It is the responsibility of each laboratory to determine correct CPT codes to use for billing.

CPT codes are provided by the performing laboratory.

81430

81431

88233-Tissue culture, skin, solid tissue biopsy (if appropriate)

88240-Cryopreservation (if appropriate)

LOINC® Information
Provides guidance in determining the Logical Observation Identifiers Names and Codes (LOINC) values for the order and results codes of this test. LOINC values are provided by the performing laboratory.

Test Id Test Order Name Order LOINC Value
AHLP AudioloGene Hearing Loss Panel 99972-2
Result Id Test Result Name Result LOINC Value
Applies only to results expressed in units of measure originally reported by the performing laboratory. These values do not apply to results that are converted to other units of measure.
619373 Test Description 62364-5
619374 Specimen 31208-2
619375 Source 31208-2
619376 Result Summary 50397-9
619377 Result 82939-0
619378 Interpretation 69047-9
619379 Additional Results 82939-0
619380 Resources 99622-3
619381 Additional Information 48767-8
619382 Method 85069-3
619383 Genes Analyzed 48018-6
619384 Disclaimer 62364-5
619385 Released By 18771-6

Test Setup Resources

Setup Files
Test setup information contains test file definition details to support order and result interfacing between Mayo Clinic Laboratories and your Laboratory Information System.

Excel | Pdf

Sample Reports
Normal and Abnormal sample reports are provided as references for report appearance.

Normal Reports | Abnormal Reports

SI Sample Reports
International System (SI) of Unit reports are provided for a limited number of tests. These reports are intended for international account use and are only available through MayoLINK accounts that have been defined to receive them.

SI Normal Reports | SI Abnormal Reports