Supporting the diagnosis of Lyme disease in conjunction with serologic testing
This test should not be used to screen asymptomatic patients.
For more information see Acute Tick-Borne Disease Testing Algorithm.
Real-Time Polymerase Chain Reaction (PCR)/DNA Probe Hybridization
Borrelia burgdorferi by PCR
Lyme Disease (PCR)
PCR
Tick-Borne Diseases
Spirochetes
Borrelia burgdorferi
Lyme Disease
Sensu lato genogroup
Borrelia garinii
Borrelia afzelii
Borrelia mayonii
Borrelia burgdorferi sensu lato genogroup
For more information see Acute Tick-Borne Disease Testing Algorithm.
Whole Blood EDTA
This assay does not detect Borrelia miyamotoi. If infection with this organism is suspected, order BMIPB / Borrelia miyamotoi Detection, PCR, Blood or BMIYC / Borrelia miyamotoi Detection, PCR, Spinal Fluid.
Container/Tube: Lavender top (EDTA)
Specimen Volume: 1 mL
Collection Instructions: Send whole blood specimen in original tube. Do not aliquot.
If not ordering electronically, complete, print, and send a Microbiology Test Request (T244) with the specimen.
0.3 mL
Gross hemolysis | OK |
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Whole Blood EDTA | Refrigerated (preferred) | 7 days | |
Frozen | 7 days |
Supporting the diagnosis of Lyme disease in conjunction with serologic testing
This test should not be used to screen asymptomatic patients.
For more information see Acute Tick-Borne Disease Testing Algorithm.
Lyme disease is a multisystem and multistage tick-transmitted infection caused by spirochetal bacteria in the Borrelia burgdorferi sensu lato (Bbsl) complex.(1) Nearly all human infections are caused by 3 Bbsl species; B burgdorferi sensu stricto (hereafter referred to as B burgdorferi) is the primary cause of Lyme disease in North America, while Borrelia afzelii and Borrelia garinii are the primary causes of Lyme disease in Europe. In 2012, Borrelia mayonii was identified as a less common cause of Lyme disease in the upper Midwestern United States.(2,3) This organism has only been detected in patients with exposure to ticks in Minnesota and Wisconsin and has not been detected in over 10,000 specimens from patients in other states, including regions of the northeast where Lyme disease is endemic.
Lyme disease is the most commonly reported tick-borne infection in Europe and North America, causing an estimated 300,000 cases in the United States each year and 85,000 cases in Europe.(4,5) The clinical features of Lyme disease are broad and may be confused with various immune and inflammatory disorders. The classic presenting sign of early localized Lyme disease caused by B burgdorferi is erythema migrans (EM), which occurs in approximately 80% of individuals. Other early signs and symptoms include malaise, headache, fever, lymphadenopathy, and myalgia. Arthritis, neurological disease, and cardiac disease may be later stage manifestations. EM has also been seen in patients with B mayonii infection, but diffuse rashes are more commonly reported.(2) The chronic skin condition, acrodermatitis chronicum atrophicans, is also associated with B afzelii infection.
The presence of EM in the appropriate clinical setting is considered diagnostic for Lyme disease; no confirmatory laboratory testing is needed. In the absence of a characteristic EM lesion, serologic testing is the diagnostic method of choice for Lyme disease.(6) However, serology may not be positive until 1 to 2 weeks after onset of symptoms and may show decreased sensitivity for detection of infection with B mayonii. Therefore, detection of Bbsl DNA using polymerase chain reaction (PCR) may be a useful adjunct to serologic testing for detection of acute disease. PCR has shown utility for detection of Borrelia DNA from skin biopsies of Lyme-associated rashes and can be used to detect Borrelia DNA from synovial fluid and synovium biopsies. Less commonly, Borrelia DNA can be detected in cerebrospinal fluid and blood.(7) In general, blood is not the preferred source for detection of Bbsl DNA by PCR, although it may have increased utility for detection of B mayonii, due to the higher levels of observed peripheral spirochetemia with this organism.(2) Lyme PCR should always be performed in conjunction with US Food and Drug Administration approved serologic tests, and results should be correlated with serologic and epidemiologic data and clinical presentation of the patient.(8) The Mayo Clinic Lyme PCR test detects and differentiates the main causes of Lyme disease in North America (B burgdorferi and B mayonii) and Europe (B afzelii and B garinii).(2,7)
Negative
Reference values apply to all ages.
A positive result indicates the presence of DNA from Borrelia burgdorferi, Borrelia mayonii, Borrelia afzelii, or Borrelia garinii, the main agents of Lyme disease.
A negative result indicates the absence of detectable target DNA in the specimen. Due to the diagnostic sensitivity limitations of the polymerase chain reaction assay, a negative result does not preclude the presence of the organism or active Lyme disease.
Serologic tests are recommended for diagnosis of Lyme disease. Polymerase chain reaction (PCR) may play an adjunctive role but may not detect Borrelia burgdorferi DNA from blood in cases of active or chronic disease. The presence of inhibitory substances may also cause a false-negative result. PCR test results should be used as an aid in diagnosis and not considered diagnostic by themselves. These results should be correlated with serologic and epidemiologic data and clinical presentation of the patient.
Concurrent infections with multiple tick-borne pathogens, including Ehrlichia muris eauclairensis, Anaplasma phagocytophilum, Babesia microti, and Borrelia miyamotoi (a relapsing-fever Borrelia) have been reported in the United States, and consideration should be given to testing for other pathogens, if clinically indicated.
This assay detects most members of the B burgdorferi sensu lato complex (Bbsl), including Borrelia andersoni, Borrelia americana, and Borrelia bissettii, which have been rarely detected in humans. Detection of DNA from these organisms would be reported as an atypical result and prompt additional laboratory testing to further identify the DNA present. The sensitivity of this assay for detecting these organisms has not been determined.
This assay also detects some members of the Bbsl complex that are not considered to be human pathogens but may be found in ticks and other animals. Therefore, this assay should not be used to test nonhuman specimens.
The following validation data supports the use of this assay for clinical testing.
Analytical Sensitivity/Limit of Detection:
The lower limit of detection is approximately 300 to 1000 genomic copies/mL in cerebrospinal fluid, tissue, blood, and synovial fluid.
Accuracy/Diagnostic Sensitivity and Specificity:
Spiking studies of whole organism in whole blood (spiked near the approximate limit of detection) showed 100% recovery.
Analytical Specificity:
No polymerase chain reaction signal was obtained from the extracts of 22 bacterial, viral, parasitic, and fungal isolates that can cause symptoms similar to Lyme disease, including Rickettsia rickettsii, Rickettsia typhi, Ehrlichia canis, Babesia microti, Plasmodium falciparum, Plasmodium vivax, Bartonella henselae, Bartonella quintana, herpes simplex virus, and Toxoplasma gondii. Relapsing fever borreliae (including Borrelia miyamotoi) are also not detected with this assay.
Precision:
Interassay precision was 100% and intra-assay precision was 100%.
Reference Range:
The reference range for this assay is negative. This assay is only to be used for patients with a clinical history and symptoms consistent with Lyme disease and must be interpreted in the context of serologic tests, which are the gold standard for diagnosis of Lyme disease.
Reportable Range:
This is a qualitative assay, and the results are reported as negative or positive for targeted Borrelia burgdorferi.
1. Stanek G, Wormser GP, Gray J, Strle F: Lyme borreliosis. Lancet. 2012 Feb;379(9814):461-473
2. Pritt BS, Mead PS, Johnson, DK, et al: Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high levels of spirochetemia: a descriptive study. Lancet Infect Dis. 2016 May;16(5):556-564
3. Pritt BS, Respicio-Kingry LB, Sloan LM, et al: Borrelia mayonii sp. nov., a member of the Borrelia burgdorferi sensu lato complex, detected in patients and ticks in the upper midwestern United States. Int J Sys Evol Microbiol. 2016 Nov;66(11):4878-4880
4. Hinckley AF, Connally NP, Meek JI, et al: Lyme disease testing by large commercial laboratories in the United States. Clin Infect Dis. 2014 Sep 1;59(5):676-681
5. Lindgren E, Jaenson TGT: Lyme borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures. Copenhagen, Denmark: World Health Organization; 2006
6. Centers for Disease Control and Prevention. Recommendations for test performance and interpretation from the Second National Conference on Serologic Diagnosis of Lyme Disease. MMWR Morb Mortal Wkly Rep. 1995 Aug;44(31):590-591
7. Babady NE, Sloan LM, Vetter EA, et al: Percent positive rate of Lyme real-time polymerase chain reaction in blood, cerebrospinal fluid, synovial fluid, and tissue. Diagn Microbiol Infect Dis. 2008 Dec;62(4):464-466
8. Centers for Disease Control and Prevention (CDC). Lyme disease--United States, 1995. MMWR Morb Mortal Wkly Rep. 1996 Jun;45(23):481-484
Nucleic acid is extracted from clinical specimens using the automated MagNA Pure LC instrument system. The extract is then transferred wells of a 96-well plate for amplification. The LightCycler is an automated instrument that amplifies and monitors the development of target nucleic acid (amplicon) after each cycle of polymerase chain reaction (PCR). The DNA target for PCR assay is the 283-base pairs plasminogen-binding protein gene (OppA2), which is present at a frequency of 1 copy per organism in all 4 confirmed pathogenic species of the Borrelia burgdorferi sensu lato genogroup (B burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, and Borrelia mayonii). A specific base pair DNA target sequence is amplified by PCR. The detection of amplicon is based on fluorescence resonance energy transfer, which utilizes 1 hybridization probe with a donor fluorophore, fluorescein, at the 3' end, and a second hybridization probe with an acceptor fluorophore, LC-Red 610, at the 5' end. When the target amplicon is present, the LC-Red 610 emits a measurable and quantifiable light signal at a specific wavelength. Presence of the specific organism nucleic acid may be confirmed by performing a melting curve analysis of the amplicon. Using features of the melting curve analysis, the assay primers and specific hybridization probes are able to detect and differentiate B burgdorferi sensu stricto from B mayonii, B afzelii, and B garinii, although the melting curve analysis cannot differentiate between B afzelii and B garinii. Each assay run can be completed within 60 minutes.(Unpublished Mayo method)
June through November: Monday through Saturday
December through May: Monday through Friday
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.
87476
87798 x 2
87999 (if appropriate for government payers)
Test Id | Test Order Name | Order LOINC Value |
---|---|---|
PBORB | Lyme Disease PCR, B | 90892-1 |
Result Id | Test Result Name |
Result LOINC Value
Applies only to results expressed in units of measure originally reported by the performing laboratory. These values do not apply to results that are converted to other units of measure.
|
---|---|---|
56080 | B. burgdorferi PCR, B | 94247-4 |
38290 | B. mayonii PCR, B | 94248-2 |
38291 | B. garinii/B. afzelii PCR, B | 94249-0 |
38340 | Lyme Disease PCR Comment | 59464-8 |