

Creatinine, Urine

Overview

Useful For

Normalization of urinary analytes to account for the variation in urinary concentrations between individuals when using random urine collections

Method Name

Only orderable as part of a profile. For more information see:

ALBR / Albumin, Random, Urine

RALB / Albumin, Random, Urine.

Enzymatic Colorimetric Assay

NY State Available

Yes

Specimen

Specimen Type

Urine

Specimen Required

Only orderable as part of a profile. For more information see:

- -ALBR / Albumin, Random, Urine
- -RALB / Albumin, Random, Urine.

Supplies: Sarstedt 5 mL Aliquot Tube (T914)

Container/Tube: Plastic tube Specimen Volume: 5 mL Collection Instructions:

- 1. Collect a random urine specimen.
- 2. No preservative.

Specimen Minimum Volume

1 mL

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Stability Information

Creatinine, Urine

Specimen Type	Temperature	Time	Special Container
Urine	Ambient	30 days	
	Refrigerated (preferred)	30 days	
	Frozen	30 days	

Clinical & Interpretive

Clinical Information

Creatinine is formed from the metabolism of creatine and phosphocreatine, both of which are principally found in muscle. Thus, the amount of creatinine produced is in large part dependent upon the individual's muscle mass and tends not to fluctuate much from day-to-day.

Creatinine is not protein-bound and is freely filtered by glomeruli. All of the filtered creatinine is excreted in the urine. Renal tubular secretion of creatinine also contributes to a small proportion of excreted creatinine. Although most excreted creatinine is derived from an individual's muscle, dietary protein intake, particularly of cooked meat, can contribute to urinary creatinine levels.

The renal clearance of creatinine provides an estimate of glomerular filtration rate (GFR). Since creatinine, for the most part, in the urine only comes from filtration, the concentration of creatinine reflects overall urinary concentration. Therefore, creatinine can be used to normalize other analytes in a random urine specimen.

Reference Values

Only orderable as part of a profile. For more information see:

ALBR / Albumin, Random, Urine

RALB / Albumin, Random, Urine.

Not applicable

Interpretation

Decreased creatinine clearance indicates decreased glomerular filtration rate. This can be due to conditions such as progressive renal disease, or result from adverse effect on renal hemodynamics that are often reversible including certain drugs or from decreases in effective renal perfusion (eg, volume depletion or heart failure).

Increased creatinine clearance is often referred to as "hyperfiltration" and is most commonly seen during pregnancy or in patients with diabetes mellitus, before diabetic nephropathy has occurred. It also may occur with large dietary protein intake.

Cautions

Intra-individual variability in creatinine excretion may be due to differences in muscle mass or amount of ingested meat.

Acute changes in glomerular filtration rate, before a steady state has developed, will alter the amount of urinary creatinine excreted.

Clinical Reference

Creatinine, Urine

- 1. Meeusen J, Rule A, Voskoboev N, Baumann N, Lieske J: Performance of cystatin C-creatinine-based estimated glomerular filtration rate equations depends on patient characteristics. Clin Chem. 2015 Oct;61(10):1265-1272. doi:10.1373/clinchem.2015.243030
- 2. Newman DJ, Price CP: Renal function and nitrogen metabolites. In: Burtis CA, Ashwood ER, eds. Tietz Textbook of Clinical Chemistry. 3rd ed. WB Saunders Company; 1999:1204-1270
- 3. Kasiske BL, Keane WF: Laboratory assessment of renal disease: clearance, urinalysis, and renal biopsy. In: Brenner BM, ed. The Kidney. 6th ed. WB Saunders Company; 2000:1129-1170

Performance

Method Description

The enzymatic method is based on the determination of sarcosine from creatinine with the aid of creatininase, creatinase, and sarcosine oxidase. The liberated hydrogen peroxide is measured via a modified Trinder reaction using a colorimetric indicator. Optimization of the buffer system and the colorimetric indicator enables the creatinine concentration to be quantified both precisely and specifically. (Package insert: Creatinine plus ver 2. Roche Diagnostics; V15.0 03/2019)

PDF Report

No

Day(s) Performed

Monday through Sunday

Report Available

1 day

Specimen Retention Time

7 days

Performing Laboratory Location

Rochester

Fees & Codes

Fees

- Authorized users can sign in to <u>Test Prices</u> for detailed fee information.
- Clients without access to Test Prices can contact <u>Customer Service</u> 24 hours a day, seven days a week.
- Prospective clients should contact their account representative. For assistance, contact <u>Customer Service</u>.

Test Classification

This test has been modified from the manufacturer's instructions. Its performance characteristics were determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the US Food

Creatinine, Urine

and Drug Administration.

CPT Code Information

82570

LOINC® Information

Test ID	Test Order Name	Order LOINC® Value
CRE2	Creatinine	2161-8

Result ID	Test Result Name	Result LOINC® Value
CRE2	Creatinine	2161-8