

Plasma Cell Proliferative Disorder, High Risk with Reflex Probes, Diagnostic FISH Evaluation,

Bone Marrow

Overview

Useful For

Aiding in the diagnosis of new cases of multiple myeloma or other plasma cell proliferative disorders using bone marrow specimens

Identifying prognostic markers based on the abnormalities found

This test **should not be used** to track the progression of disease.

Reflex Tests

Test Id	Reporting Name	Available Separately	Always Performed
PCPDB	Probe, Each Additional	No, (Bill Only)	No
	(PCPDS)		

Additional Tests

Test Id	Reporting Name	Available Separately	Always Performed
CSPCF	PCPDS Pre-Analysis Cell	No	Yes
	Sorting, BM		

Testing Algorithm

This test is designed for diagnostic specimens from patients with multiple myeloma or other plasma cell proliferative disorders.

When this test is ordered, pre-analysis cell sorting will be performed at an additional charge.

The fluorescence in situ hybridization (FISH) panel includes testing for the following abnormalities using the FISH probes listed:

17p-, TP53/D17Z1 1q gain, TP73/1q22

14q32 rearrangement, IGH break-apart

Based on the results from the initial panel, reflex testing may be performed to identify the following abnormalities using the probes listed:

t(11;14)(q13;q32), CCND1/IGH fusion

t(14;16)(q32;q23), IGH/MAF fusion

t(4;14)(p16.3;q32), FGFR3/IGH fusion

t(14;20)(q32;q12), IGH/MAFB fusion

Plasma Cell Proliferative Disorder, High Risk with Reflex Probes, Diagnostic FISH Evaluation,

Bone Marrow

For follow-up samples, the following probes will be evaluated if sufficient plasma cells are identified:

If a previous diagnostic sample was uninformative for a probe set, attempts may be made to achieve results for the missing probe on a subsequent sample (if sufficient plasma cells are identified).

17p-, TP53/D17Z1

1q gain, TP73/1q22

8q24.1 rearrangement, MYC break-apart

Initial screening will be performed to determine if sufficient plasma cells are present within the provided specimen. If the specimen is received greater than 96 hours from collection, this test will be canceled and MFCDF / Myeloma, High Risk with Reflex Probes, Diagnostic FISH Evaluation, Fixed Cell Pellet will be added as the more appropriate test.

Appropriate ancillary probes may be performed at consultant discretion to render comprehensive assessment. Any additional probes will have the results included within the final report and will be performed at an additional charge.

Highlights

This assay detects high-risk abnormalities plus CCND1/IGH fusion observed in the bone marrow of patients with a plasma cell disorder.

Method Name

PCPDS, PCPDB: Fluorescence In Situ Hybridization (FISH)

CSPCF: Flow Cytometric Cell Selection

NY State Available

Yes

Specimen

Specimen Type

Bone Marrow

Ordering Guidance

For a more complete genetic evaluation, order MPCDS / mSMART, Plasma Cell Proliferative Disorder, FISH, Bone Marrow.

For testing paraffin-embedded tissue samples from patients with a plasma cell disorder, order PLASF / Plasma Cell Proliferative Disorder, FISH, Tissue.

For fixed cell pellet specimens, order MFCDF / Myeloma, High Risk, with Reflex Probes, Diagnostic FISH Evaluation, Fixed Cell Pellet.

Plasma Cell Proliferative Disorder, High Risk with Reflex Probes, Diagnostic FISH Evaluation,

Bone Marrow

Testing will be changed to the appropriate test if this test is ordered on either of the previous specimens or if bone marrow specimens are received more than 96 hours from collection.

Shipping Instructions

- 1. Specimen should arrive within 96 hours of collection.
- 2. Advise Express Mail or equivalent if not on courier service.

Necessary Information

A reason for testing and a flow cytometry and/or a bone marrow pathology report should be submitted with each specimen. The laboratory will not reject testing if this information is not provided, but appropriate testing and interpretation may be compromised or delayed. If this information is not provided, an appropriate indication for testing may be entered by Mayo Clinic Laboratories.

Specimen Required

Container/Tube:

Preferred: Yellow top (ACD)

Acceptable: Green top (heparin) or lavender top (EDTA)

Specimen Volume: 4 mL Collection Instructions:

- 1. Invert several times to mix bone marrow
- 2, Send bone marrow specimen in original tube. Do not aliquot.

Forms

If not ordering electronically, complete, print, and send a <u>Hematopathology/Cytogenetics Test Request</u> (T726) with the specimen.

Specimen Minimum Volume

2 mL

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Specimen Stability Information

Specimen Type	Temperature	Time	Special Container
Bone Marrow	Ambient (preferred)	4 days	
	Refrigerated	4 days	

Clinical & Interpretive

Clinical Information

Multiple myeloma is a hematologic neoplasm that generally originates in the bone marrow and develops from malignant plasma cells. There are 4 main categories of plasma cell proliferative disorders: monoclonal gammopathy of

Plasma Cell Proliferative Disorder, High Risk with Reflex Probes, Diagnostic FISH Evaluation,

Bone Marrow

undetermined significance (MGUS), monoclonal immunoglobulin deposition diseases (amyloidosis), plasmacytoma, and multiple myeloma. MGUS, which occurs in 3% to 4% of individuals over age 50 years, represents the identification of an asymptomatic monoclonal protein, yet approximately 1% per year will progress to multiple myeloma. Amyloidosis represents a rare group of deposition disorders including primary amyloidosis vs. light chain and heavy chain disease. Plasmacytomas represent isolated collections of bone or extramedullary plasma cells with a risk for development of multiple myeloma. Generalized bone pain, anemia, limb numbness or weakness, symptoms of hypercalcemia, and recurrent infections are all symptoms that may indicate multiple myeloma.

As myeloma progresses, the malignant plasma cells interfere with normal blood product formation in the bone marrow resulting in anemia and leukopenia. Myeloma also causes an overstimulation of osteoclasts, causing excessive breakdown of bone tissue without the normal corresponding bone formation. These bone lesions are seen in approximately 66% of myeloma patients. In advanced disease, bone loss may reach a degree where the patient suffers fractures easily.

Multiple myeloma is increasingly recognized as a disease characterized by marked cytogenetic, molecular, and proliferative heterogeneity. This heterogeneity is manifested clinically by varying degrees of disease aggressiveness. Multiple myeloma patients with more aggressive disease experience suboptimal responses to some therapeutic approaches; therefore, identifying these patients is critically important for selecting appropriate treatment options.

Reference Values

An interpretive report will be provided.

Interpretation

A neoplastic clone is detected when the percent of cells with an abnormality exceeds the normal reference range for any given probe.

The absence of an abnormal clone does not rule out the presence of neoplastic disorder.

Cautions

This test is not approved by the US Food and Drug Administration, and it is best used as an adjunct to existing clinical and pathologic information.

Supportive Data

Each probe was independently tested and verified on unstimulated peripheral blood and bone marrow specimens.

Normal cutoffs were calculated based on the results of 25 normal specimens. Each probe set was evaluated to confirm the probe set detected the abnormality it was designed to detect.

Clinical Reference

- 1. Swerdlow SH, Campo E, Harris NL, et al, eds: WHO Classification of Tumour of Haematopoietic and Lymphoid Tissues. 4th ed. IARC Press; 2017. WHO Classification of Tumours, Vol 2
- 2. Kumar SK, Rajkumar SV. The multiple myelomas-current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 2018l;15(7):409-421. doi:10.1038/s41571-018-0018-y
- 3. Rajkumar SV, Landgren O, Mateos MV: Smoldering multiple myeloma. Blood. 2015;125(20):3069-3075. doi:10.1182/blood-2014-09-568899

Plasma Cell Proliferative Disorder, High Risk with Reflex Probes, Diagnostic FISH Evaluation,

Bone Marrow

- 4. Muchtar E, Dispenzieri A, Kumar SK, et al. Interphase fluorescence in situ hybridization in untreated AL amyloidosis has an independent prognostic impact by abnormality type and treatment category. Leukemia. 2017;31(7);1562-1569. doi:10.1038/leu.2016.369
- 5. Lakshman A, Paul S, Rajkumar SV, et al. Prognostic significance of interphase FISH in monoclonal gammopathy of undetermined significance. Leukemia. 2018;32(8);1811-1815. doi:10.1038/s41375-018-0030-3
- 6. Bochtler T, Hegenbart U, Kunz C, et al. Prognostic impact of cytogenetic aberrations in AL amyloidosis patients after high-dose melphalan: a long-term follow-up study. Blood. 2016 28;128(4):594-602. doi:10.1182/blood-2015-10-676361
- 7. Treatment guidelines: multiple myeloma. mSMART 3.0. Accessed February 20, 2024. Available at www.msmart.org/mm-treatment-guidelines

Performance

Method Description

This test is performed using commercially available and laboratory-developed probes. Deletion or monosomy of chromosome 17 and copy number gain of 1q are detected using enumeration strategy probes. Translocations involving *IGH* are detected using dual-color, dual-fusion fluorescence in situ hybridization strategy probes. Rearrangement of *IGH* and *MYC* are detected using a break-apart strategy probe. For each probe set, 50 plasma cells (if possible) are scored and the result for each probe is reported.(Unpublished Mayo method)

PDF Report

No

Day(s) Performed

Monday through Friday

Report Available

7 to 10 days

Specimen Retention Time

4 weeks

Performing Laboratory Location

Rochester

Fees & Codes

Fees

- Authorized users can sign in to <u>Test Prices</u> for detailed fee information.
- Clients without access to Test Prices can contact Customer Service 24 hours a day, seven days a week.

Plasma Cell Proliferative Disorder, High Risk with Reflex Probes, Diagnostic FISH Evaluation,

Bone Marrow

Prospective clients should contact their account representative. For assistance, contact <u>Customer Service</u>.

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

88271 x 2, 88274, 88291-FISH Probe, Analysis, Interpretation; 1 probe set 88271 x 2, 88274-FISH Probe, Analysis; each additional probe set (if appropriate)

LOINC® Information

Test ID	Test Order Name	Order LOINC® Value
PCPDS	Plasma Cell Prolif, High Risk, FISH	98014-4

Result ID	Test Result Name	Result LOINC® Value
606080	Result Summary	62357-9
606081	Interpretation	69965-2
606082	Result Table	93356-4
606083	Result	62356-1
606084	Specimen	31208-2
606085	Source	39111-0
606086	Method	85069-3
606087	Additional Information	48767-8
606088	Disclaimer	62364-5
606089	Released By	18771-6
GC054	Reason for Referral	42349-1